Controlling Sparseness in Non-negative Tensor Factorization
نویسندگان
چکیده
Non-negative tensor factorization (NTF) has recently been proposed as sparse and efficient image representation (Welling and Weber, Patt. Rec. Let., 2001). Until now, sparsity of the tensor factorization has been empirically observed in many cases, but there was no systematic way to control it. In this work, we show that a sparsity measure recently proposed for non-negative matrix factorization (Hoyer, J. Mach. Learn. Res., 2004) applies to NTF and allows precise control over sparseness of the resulting factorization. We devise an algorithm based on sequential conic programming and show improved performance over classical NTF codes on artificial and on real-world data sets.
منابع مشابه
Blind multispectral image decomposition by 3D nonnegative tensor factorization.
Alpha-divergence-based nonnegative tensor factorization (NTF) is applied to blind multispectral image (MSI) decomposition. The matrix of spectral profiles and the matrix of spatial distributions of the materials resident in the image are identified from the factors in Tucker3 and PARAFAC models. NTF preserves local structure in the MSI that is lost as a result of vectorization of the image when...
متن کاملApproximate L0 constrained non-negative matrix and tensor factorization
Non-negative matrix factorization (NMF), i.e. V ≈ WH where both V, W and H are non-negative has become a widely used blind source separation technique due to its part based representation. The NMF decomposition is not in general unique and a part based representation not guaranteed. However, imposing sparseness both improves the uniqueness of the decomposition and favors part based representati...
متن کاملA Visual Attention Model for Video Based on Non- Negative Matrix Factorization Sparseness on Parts
Visual attention is one of the most important mechanism of HVS (human visual system) and has been applied into many fields. Research on visual attention model is hot and difficult. This paper presents a novel visual attention model for video based on NMFSCP (non-negative matrix factorization sparseness on parts). Saliency map of this model is generated by utilizing four types of visual attentio...
متن کاملEfficient online learning of a non-negative sparse autoencoder
We introduce an efficient online learning mechanism for nonnegative sparse coding in autoencoder neural networks. In this paper we compare the novel method to the batch algorithm non-negative matrix factorization with and without sparseness constraint. We show that the efficient autoencoder yields to better sparseness and lower reconstruction errors than the batch algorithms on the MNIST benchm...
متن کامل3D tensor factorization approach to single-frame model-free blind-image deconvolution.
By applying a bank of 2D Gabor filters to a blurred image, single-frame blind-image deconvolution (SF BID) is formulated as a 3D tensor factorization (TF) problem, with the key contribution that neither origin nor size of the spatially invariant blurring kernel is required to be known or estimated. Mixing matrix, the original image, and its spatial derivatives are identified from the factors in...
متن کامل